Skip to contents

Project management

Getting started with a new data integration project

create_moiraine_pipeline()
Creates a target script file from template

Data import

Importing data into R

import_dataset_csv()
Import a dataset from a csv file
import_fmetadata_csv()
Import feature metadata from a csv file
import_fmetadata_gff()
Import features metadata from a GFF/GTF file
import_smetadata_csv()
Import samples metadata from a csv file
import_dataset_csv_factory()
Target factory for csv datasets import
import_fmetadata_csv_factory()
Target factory for csv features metadata import
import_fmetadata_gff_factory()
Target factory for GFF/GTF features metadata import
import_smetadata_csv_factory()
Target factory for csv samples metadata import

Omics and multi-omics sets creation

Creating omics sets

create_omics_set()
Create a Biobase set object to store omics data
create_omics_set_factory()
Target factory for omics sets creation
create_multiomics_set()
Create a MultiDataSet object to store multi-omics data
add_omics_set()
Adds an omics set to a MultiDataSet object
MetabolomeSet MetabolomeSet-class
Class to contain objects describing high-throughput metabolomics assays.
PhenotypeSet PhenotypeSet-class
Class to contain objects describing phenotypic assays.
add_metabo()
Method to add a MetabolomeSet to a MultiDataSet object.
add_pheno()
Method to add a PhenotypeSet to a MultiDataSet object.

Multi-omics sets (MultiDataSet objects)

Querying

Querying the MultiDataSet object

n_features()
Number of features in each dataset of MultiDataSet object
n_samples()
Number of samples in each dataset of MultiDataSet object
get_features()
Get feature IDs from MultiDataSet
get_samples()
Get sample IDs from MultiDataSet
get_datasets()
Get multi-omics measurement datasets
get_dataset_matrix()
Get multi-omics dataset as matrix
get_features_metadata()
Get features metadata dataframes from MultiDataSet
get_samples_metadata()
Get samples metadata dataframes from MultiDataSet
get_samples_metadata_combined()
Get combined samples metadata data-frame from MultiDataSet
check_missing_values()
Check for missing values in MultiDataSet
get_features_labels()
Get feature labels
join_features_metadata()
Join feature metadata to table
join_samples_metadata()
Join samples metadata to table

Plotting

Plotting properties of omics datasets

plot_samples_upset()
Upset plot of samples
plot_density_data()
Per-dataset density plot for MultiDataSet object
plot_meansd_data()
Per-dataset mean-sd trend plots for MultiDataSet object
plot_data_covariate()
Plots omics data vs sample covariate
plot_data_heatmap()
Plots omics data as heatmap

Modifying

Modifying or subsetting datasets or metadata

replace_dataset()
Replace matrix dataset within a MultiDataSet object
round_dataset()
Round values in omics dataset from MultiDataSet object
add_features_metadata()
Adding data-frame to features metadata
add_samples_metadata()
Adding data-frame to samples metadata
subset_features()
Subset a MultiDataSet object by feature

PCA

PCA and missing values imputation on multi-omics set

run_pca()
Run PCA on MultiDataSet
run_pca_matrix()
Run PCA on matrix
get_complete_data()
Get MultiDataSet object with imputed values
pca_complete_data_factory()
Target factory for PCA run and missing values imputation on each omics dataset
plot_screeplot_pca()
Screeplots for single-omics PCA
plot_samples_coordinates_pca()
Samples score plots for single-omics PCA
get_pca_arguments()
Extract arguments used in PCA run

Transformation

Omics datasets transformation and normalisation

transform_bestNormalise_auto()
Applies the bestNormalize function to rows of a matrix
transform_bestNormalise_manual()
Applies a normalisation method from bestNormalize to rows of a matrix
transform_dataset()
Applies a transformation to a dataset from a MultiDataSet object
transform_logx()
Applies a log-x transformation to matrix
transform_vsn()
Applies Variance Stabilising Normalisation (vsn) to matrix
transform_vst()
Applies Variance Stabilising Transformation (DESeq2) to matrix
transformation_datasets_factory()
Target factory for datasets transformation
get_transformed_data()
Get MultiDataSet with transformed data
get_table_transformations()
Get table with transformation applied to each dataset
zero_to_half_min()
Replace zeros with half-min in matrix

Prefiltering

Features prefiltering for multi-omics set

Unsupervised (Median Absolute Variation)

select_features_mad()
Select features based on Median Absolute Deviation from MultiDataSet
select_features_cov()
Select features based on Coefficient of Variation from MultiDataSet
select_features_mad_matrix()
Select features based on Median Absolute Deviation from matrix
select_features_cov_matrix()
Select features based on Coefficient of Variation from matrix
get_filtered_dataset_variability()
Get filtered MultiDataSet object based on variability measure
feature_preselection_mad_factory()
Target factory for feature preselection based on Median Absolute Deviation
feature_preselection_cov_factory()
Target factory for feature preselection based on Coefficient of Variation
plot_feature_preselection_mad()
Diagnostics plots for MAD-based feature preselection
plot_feature_preselection_cov()
Diagnostics plots for COV-based feature preselection

Supervised (sPLS-DA)

get_input_splsda()
Generate sPLS-DA input data (for mixomics)
perf_splsda()
Assess optimal number of components for sPLS-DA on omics dataset from MultiDataSet object
run_splsda()
Performs sPLS-DA on omics dataset from MultiDataSet object
get_filtered_dataset_splsda()
Get filtered MultiDataSet object based on sPLS-DA runs
feature_preselection_splsda_factory()
Target factory for feature preselection based on sPLS-DA
plot_feature_preselection_splsda()
Diagnostics plots for sPLS-DA-based feature preselection

Supervised integration

Integration of datasets aiming to discriminate samples based on an outcome of interest

DIABLO

Supervised integration with the DIABLO method from mixOmics

get_input_mixomics_supervised()
Generate mixomics input data for supervised methods
run_pairwise_pls()
Pairwise PLS datasets comparison
diablo_generate_design_matrix()
Generate DIABLO design matrix
diablo_get_optim_ncomp()
Get the optimal ncomp value
diablo_get_pairwise_pls_corr()
Get pairwise correlations from PLS run
diablo_get_params()
Get parameters from DIABLO run
diablo_get_wa_coord()
Get weighted average coordinates
diablo_pairwise_pls_factory()
Target factory for pairwise PLS and design matrix estimation for DIABLO run
diablo_plot()
Plots DIABLO output
diablo_plot_circos()
Plots DIABLO circos plot
diablo_plot_perf()
Plots DIABLO perf results
diablo_plot_tune()
Plots DIABLO tune results
diablo_plot_var()
Plots DIABLO features correlation circle
diablo_predefined_design_matrix()
Generate a design matrix for DIABLO
diablo_run()
Runs DIABLO algorithm
diablo_table_optim_keepX()
Formatted table with optimal keepX values
diablo_tune()
Tunes keepX arg for DIABLO

MEFISTO

Supervised integration with the MEFISTO method from MOFA2 (for time-series or spatially resolved data)

get_input_mefisto()
Generate MEFISTO input data

Unsupervised integration

Integration of datasets aiming at assessing variation common to the datasets

MOFA

Unsupervised integration with the MOFA method from MOFA2

get_input_mofa2()
Generate input data for MOFA2 package
get_input_mofa()
Generate MOFA input data
mofa_get_weights()
Get feature weights from MOFA object
mofa_plot_cor_covariates()
Plots the correlation between factors and covariates for MOFA

sO2PLS

Unsupervised integration of 2 datasets with the sO2PLS method from omicsPLS

get_input_omicspls()
Generate omicsPLS input data
so2pls_compare_samples_joint_components()
Compares sO2PLS samples joint component scores between the two datasets
so2pls_crossval_o2m()
Wrapper for OmicsPLS::crossval_o2m function
so2pls_crossval_o2m_adjR2()
Wrapper for OmicsPLS::crossval_o2m_adjR2 function
so2pls_crossval_sparsity()
Perform cross-validation to find the optimal number of features/groups to keep for each joint component for sO2PLS
so2pls_get_components()
Get list of latent components from sO2PLS results
so2pls_get_optim_keep()
Extract optimal number of features to keep from cross-validation results for sO2PLS
so2pls_get_optim_ncomp()
Extract optimal number of components from cross-validation results for sO2PLS
so2pls_get_optim_ncomp_adj()
Extract optimal number of components from adjusted cross-validation results for sO2PLS
so2pls_get_variance_explained()
Percentage of variance explained for sO2PLS
so2pls_get_wa_coord()
Computes average sample coordinates for sO2PLS joint components
so2pls_o2m()
Wrapper for OmicsPLS::o2m function
so2pls_plot_cv()
Plots cross-validation results for sO2PLS
so2pls_plot_cv_adj()
Plot adjusted cross-validation results for sO2PLS
so2pls_plot_cv_sparsity()
Plot sparsity cross-validation results for sO2PLS
so2pls_plot_joint_components_coefficients()
Plots sO2PLS contributions between datasets joint components
so2pls_plot_samples_joint_components()
Plots sO2PLS joint components samples scores
so2pls_plot_samples_specific_components()
Plots sO2PLS specific components samples scores
so2pls_plot_summary()
Plot summary of sO2PLS run
so2pls_print_cv_adj()
Print adjusted cross-validation results for sO2PLS
so2pls_print_cv_sparsity()
Print sparsity cross-validation results for sO2PLS
so2pls_screeplot()
Screeplot sO2PLS run

sPLS

Unsupervised integration of 2 datasets with the sPLS method from mixOmics

get_input_spls()
Generate sPLS input data (for mixomics)
get_input_mixomics_unsupervised()
Generate mixomics input data for unsupervised methods
spls_get_optim_ncomp()
Select the optimal ncomp from sPLS cross-validation results
spls_get_params()
Get parameters from sPLS run
spls_get_wa_coord()
Computes average sample coordinates for sPLS components
spls_plot_tune()
Displays results of sPLS tuning
spls_plot_var()
Plots sPLS features correlation circle
spls_run()
Run sPLS algorithm
spls_tune()
Performs cross-validation for mixomics sPLS to select optimal keepX and keepY

Standardised method output

Functions to get and query the results of an integration method as a standardised R object

get_output() get_output_pca() get_output_splsda() get_output_spls() get_output_diablo() get_output_mofa2() get_output_so2pls()
Extract output of integration method in standard format
get_latent_dimensions()
Get latent dimensions levels from dimension reduction output
get_top_features()
Extract top features
get_selected_features()
Extract selected features

Plotting functions

plot_variance_explained()
Plot of variance explained
plot_samples_score()
Plots sample scores as scatterplot matrix
plot_samples_score_pair()
Plots sample scores as a scatterplot
plot_samples_score_covariate()
Plots sample scores against covariate
plot_features_weight_distr()
Plots features weight distribution
plot_features_weight_pair()
Plots features weight as a scatterplot
plot_features_weight_covariate()
Plots features weight against covariate
plot_top_features()
Plots top features importance

Methods evaluation

Evaluating the results of an integration method against prior knowledge

evaluate_feature_selection_table()
Evaluate feature selection against features label
make_feature_sets_from_df()
Makes list of feature sets from data-frame
make_feature_sets_from_fm()
Makes list of feature sets from features metadata
check_feature_sets()
Checks features assignment to sets
reduce_feature_sets_data()
Reduce feature sets to match multi-omics dataset
evaluate_method_enrichment()
Enrichment analysis for integration results
plot_features_weight_set()
Plots features weight in/not in a set
compute_samples_silhouette()
Computes samples silhouette score from method output

Methods comparison

Comparison of the results from several integration methods

get_samples_score_correlation()
Get samples score correlation
get_features_weight_correlation()
Get features weight correlation
comparison_heatmap_corr()
Heatmap of correlation between latent dimensions
comparison_plot_correlation()
Correlation plot between latent components
compute_consensus_importance()
Computes consensus feature importance
consensus_importance_metric()
Calculate features importance score
show_consensus_metrics()
Illustrates importance consensus metrics

Other (utils)

Other miscellaneous functions

Helper MultiDataSet object

check_is_multidataset()
Checks whether object is MultiDataSet
check_input_multidataset()
Check a MultiDataSet input

Helper plotting functions

plot_correlation_matrix()
Plot correlation matrix
plot_correlation_matrix_full()
Plots a full correlation matrix (corrplot-style)
ggpairs_custom()
ggpairs plot with custom colours
plot_x_wrapper()
Wrapper to create plot
plot_x_continuous()
Scatter plot function
plot_x_discrete()
Violin plot function function

Misc.

hclust_matrix_rows()
Hierarchical clustering of matrix rows
options_list_as_tibble()
Returns options list as a tibble
is_equal_or_null()
Check null or equality