
Package index
-
create_moiraine_pipeline() - Creates a target script file from template
-
import_dataset_csv() - Import a dataset from a csv file
-
import_fmetadata_csv() - Import feature metadata from a csv file
-
import_fmetadata_gff() - Import features metadata from a GFF/GTF file
-
import_smetadata_csv() - Import samples metadata from a csv file
-
import_dataset_csv_factory() - Target factory for csv datasets import
-
import_fmetadata_csv_factory() - Target factory for csv features metadata import
-
import_fmetadata_gff_factory() - Target factory for GFF/GTF features metadata import
-
import_smetadata_csv_factory() - Target factory for csv samples metadata import
-
create_omics_set() - Create a Biobase set object to store omics data
-
create_omics_set_factory() - Target factory for omics sets creation
-
create_multiomics_set() - Create a MultiDataSet object to store multi-omics data
-
add_omics_set() - Adds an omics set to a MultiDataSet object
-
MetabolomeSetMetabolomeSet-class - Class to contain objects describing high-throughput metabolomics assays.
-
PhenotypeSetPhenotypeSet-class - Class to contain objects describing phenotypic assays.
-
add_metabo() - Method to add a MetabolomeSet to a MultiDataSet object.
-
add_pheno() - Method to add a PhenotypeSet to a MultiDataSet object.
-
n_features() - Number of features in each dataset of MultiDataSet object
-
n_samples() - Number of samples in each dataset of MultiDataSet object
-
get_features() - Get feature IDs from MultiDataSet
-
get_samples() - Get sample IDs from MultiDataSet
-
get_datasets() - Get multi-omics measurement datasets
-
get_dataset_matrix() - Get multi-omics dataset as matrix
-
get_features_metadata() - Get features metadata dataframes from MultiDataSet
-
get_samples_metadata() - Get samples metadata dataframes from MultiDataSet
-
get_samples_metadata_combined() - Get combined samples metadata data-frame from MultiDataSet
-
check_missing_values() - Check for missing values in MultiDataSet
-
get_features_labels() - Get feature labels
-
join_features_metadata() - Join feature metadata to table
-
join_samples_metadata() - Join samples metadata to table
-
plot_samples_upset() - Upset plot of samples
-
plot_density_data() - Per-dataset density plot for MultiDataSet object
-
plot_meansd_data() - Per-dataset mean-sd trend plots for MultiDataSet object
-
plot_data_covariate() - Plots omics data vs sample covariate
-
plot_data_heatmap() - Plots omics data as heatmap
-
replace_dataset() - Replace matrix dataset within a MultiDataSet object
-
round_dataset() - Round values in omics dataset from MultiDataSet object
-
add_features_metadata() - Adding data-frame to features metadata
-
add_samples_metadata() - Adding data-frame to samples metadata
-
subset_features() - Subset a MultiDataSet object by feature
-
run_pca() - Run PCA on MultiDataSet
-
run_pca_matrix() - Run PCA on matrix
-
get_complete_data() - Get MultiDataSet object with imputed values
-
pca_complete_data_factory() - Target factory for PCA run and missing values imputation on each omics dataset
-
plot_screeplot_pca() - Screeplots for single-omics PCA
-
plot_samples_coordinates_pca() - Samples score plots for single-omics PCA
-
get_pca_arguments() - Extract arguments used in PCA run
-
transform_bestNormalise_auto() - Applies the bestNormalize function to rows of a matrix
-
transform_bestNormalise_manual() - Applies a normalisation method from bestNormalize to rows of a matrix
-
transform_dataset() - Applies a transformation to a dataset from a MultiDataSet object
-
transform_logx() - Applies a log-x transformation to matrix
-
transform_vsn() - Applies Variance Stabilising Normalisation (vsn) to matrix
-
transform_vst() - Applies Variance Stabilising Transformation (DESeq2) to matrix
-
transformation_datasets_factory() - Target factory for datasets transformation
-
get_transformed_data() - Get MultiDataSet with transformed data
-
get_table_transformations() - Get table with transformation applied to each dataset
-
zero_to_half_min() - Replace zeros with half-min in matrix
-
select_features_mad() - Select features based on Median Absolute Deviation from MultiDataSet
-
select_features_cov() - Select features based on Coefficient of Variation from MultiDataSet
-
select_features_mad_matrix() - Select features based on Median Absolute Deviation from matrix
-
select_features_cov_matrix() - Select features based on Coefficient of Variation from matrix
-
get_filtered_dataset_variability() - Get filtered MultiDataSet object based on variability measure
-
feature_preselection_mad_factory() - Target factory for feature preselection based on Median Absolute Deviation
-
feature_preselection_cov_factory() - Target factory for feature preselection based on Coefficient of Variation
-
plot_feature_preselection_mad() - Diagnostics plots for MAD-based feature preselection
-
plot_feature_preselection_cov() - Diagnostics plots for COV-based feature preselection
-
get_input_splsda() - Generate sPLS-DA input data (for mixomics)
-
perf_splsda() - Assess optimal number of components for sPLS-DA on omics dataset from MultiDataSet object
-
run_splsda() - Performs sPLS-DA on omics dataset from MultiDataSet object
-
get_filtered_dataset_splsda() - Get filtered MultiDataSet object based on sPLS-DA runs
-
feature_preselection_splsda_factory() - Target factory for feature preselection based on sPLS-DA
-
plot_feature_preselection_splsda() - Diagnostics plots for sPLS-DA-based feature preselection
Supervised integration
Integration of datasets aiming to discriminate samples based on an outcome of interest
-
get_input_mixomics_supervised() - Generate mixomics input data for supervised methods
-
run_pairwise_pls() - Pairwise PLS datasets comparison
-
diablo_generate_design_matrix() - Generate DIABLO design matrix
-
diablo_get_optim_ncomp() - Get the optimal ncomp value
-
diablo_get_pairwise_pls_corr() - Get pairwise correlations from PLS run
-
diablo_get_params() - Get parameters from DIABLO run
-
diablo_get_wa_coord() - Get weighted average coordinates
-
diablo_pairwise_pls_factory() - Target factory for pairwise PLS and design matrix estimation for DIABLO run
-
diablo_plot() - Plots DIABLO output
-
diablo_plot_circos() - Plots DIABLO circos plot
-
diablo_plot_perf() - Plots DIABLO perf results
-
diablo_plot_tune() - Plots DIABLO tune results
-
diablo_plot_var() - Plots DIABLO features correlation circle
-
diablo_predefined_design_matrix() - Generate a design matrix for DIABLO
-
diablo_run() - Runs DIABLO algorithm
-
diablo_table_optim_keepX() - Formatted table with optimal keepX values
-
diablo_tune() - Tunes keepX arg for DIABLO
MEFISTO
Supervised integration with the MEFISTO method from MOFA2 (for time-series or spatially resolved data)
-
get_input_mefisto() - Generate MEFISTO input data
Unsupervised integration
Integration of datasets aiming at assessing variation common to the datasets
-
get_input_mofa2() - Generate input data for MOFA2 package
-
get_input_mofa() - Generate MOFA input data
-
mofa_get_weights() - Get feature weights from MOFA object
-
mofa_plot_cor_covariates() - Plots the correlation between factors and covariates for MOFA
-
get_input_omicspls() - Generate omicsPLS input data
-
so2pls_compare_samples_joint_components() - Compares sO2PLS samples joint component scores between the two datasets
-
so2pls_crossval_o2m() - Wrapper for OmicsPLS::crossval_o2m function
-
so2pls_crossval_o2m_adjR2() - Wrapper for OmicsPLS::crossval_o2m_adjR2 function
-
so2pls_crossval_sparsity() - Perform cross-validation to find the optimal number of features/groups to keep for each joint component for sO2PLS
-
so2pls_get_components() - Get list of latent components from sO2PLS results
-
so2pls_get_optim_keep() - Extract optimal number of features to keep from cross-validation results for sO2PLS
-
so2pls_get_optim_ncomp() - Extract optimal number of components from cross-validation results for sO2PLS
-
so2pls_get_optim_ncomp_adj() - Extract optimal number of components from adjusted cross-validation results for sO2PLS
-
so2pls_get_variance_explained() - Percentage of variance explained for sO2PLS
-
so2pls_get_wa_coord() - Computes average sample coordinates for sO2PLS joint components
-
so2pls_o2m() - Wrapper for OmicsPLS::o2m function
-
so2pls_plot_cv() - Plots cross-validation results for sO2PLS
-
so2pls_plot_cv_adj() - Plot adjusted cross-validation results for sO2PLS
-
so2pls_plot_cv_sparsity() - Plot sparsity cross-validation results for sO2PLS
-
so2pls_plot_joint_components_coefficients() - Plots sO2PLS contributions between datasets joint components
-
so2pls_plot_samples_joint_components() - Plots sO2PLS joint components samples scores
-
so2pls_plot_samples_specific_components() - Plots sO2PLS specific components samples scores
-
so2pls_plot_summary() - Plot summary of sO2PLS run
-
so2pls_print_cv_adj() - Print adjusted cross-validation results for sO2PLS
-
so2pls_print_cv_sparsity() - Print sparsity cross-validation results for sO2PLS
-
so2pls_screeplot() - Screeplot sO2PLS run
-
get_input_spls() - Generate sPLS input data (for mixomics)
-
get_input_mixomics_unsupervised() - Generate mixomics input data for unsupervised methods
-
spls_get_optim_ncomp() - Select the optimal ncomp from sPLS cross-validation results
-
spls_get_params() - Get parameters from sPLS run
-
spls_get_wa_coord() - Computes average sample coordinates for sPLS components
-
spls_plot_tune() - Displays results of sPLS tuning
-
spls_plot_var() - Plots sPLS features correlation circle
-
spls_run() - Run sPLS algorithm
-
spls_tune() - Performs cross-validation for mixomics sPLS to select optimal keepX and keepY
Standardised method output
Functions to get and query the results of an integration method as a standardised R object
-
get_output()get_output_pca()get_output_splsda()get_output_spls()get_output_diablo()get_output_mofa2()get_output_so2pls() - Extract output of integration method in standard format
-
get_latent_dimensions() - Get latent dimensions levels from dimension reduction output
-
get_top_features() - Extract top features
-
get_selected_features() - Extract selected features
-
plot_variance_explained() - Plot of variance explained
-
plot_samples_score() - Plots sample scores as scatterplot matrix
-
plot_samples_score_pair() - Plots sample scores as a scatterplot
-
plot_samples_score_covariate() - Plots sample scores against covariate
-
plot_features_weight_distr() - Plots features weight distribution
-
plot_features_weight_pair() - Plots features weight as a scatterplot
-
plot_features_weight_covariate() - Plots features weight against covariate
-
plot_top_features() - Plots top features importance
-
evaluate_feature_selection_table() - Evaluate feature selection against features label
-
make_feature_sets_from_df() - Makes list of feature sets from data-frame
-
make_feature_sets_from_fm() - Makes list of feature sets from features metadata
-
check_feature_sets() - Checks features assignment to sets
-
reduce_feature_sets_data() - Reduce feature sets to match multi-omics dataset
-
evaluate_method_enrichment() - Enrichment analysis for integration results
-
plot_features_weight_set() - Plots features weight in/not in a set
-
compute_samples_silhouette() - Computes samples silhouette score from method output
-
get_samples_score_correlation() - Get samples score correlation
-
get_features_weight_correlation() - Get features weight correlation
-
comparison_heatmap_corr() - Heatmap of correlation between latent dimensions
-
comparison_plot_correlation() - Correlation plot between latent components
-
compute_consensus_importance() - Computes consensus feature importance
-
consensus_importance_metric() - Calculate features importance score
-
show_consensus_metrics() - Illustrates importance consensus metrics
-
get_targets_running_time()plot_running_time() - Extract/plot running time of functions used for different integration methods
-
get_method_functions() - Get functions used for each integration method
-
aggr_patterns_fct() - Aggregate regexp patterns for a search
-
check_is_multidataset() - Checks whether object is MultiDataSet
-
check_input_multidataset() - Check a MultiDataSet input
-
plot_correlation_matrix() - Plot correlation matrix
-
plot_correlation_matrix_full() - Plots a full correlation matrix (corrplot-style)
-
ggpairs_custom() - ggpairs plot with custom colours
-
plot_x_wrapper() - Wrapper to create plot
-
plot_x_continuous() - Scatter plot function
-
plot_x_discrete() - Violin plot function function
-
hclust_matrix_rows() - Hierarchical clustering of matrix rows
-
options_list_as_tibble() - Returns options list as a tibble
-
is_equal_or_null() - Check null or equality