Package index
-
create_moiraine_pipeline()
- Creates a target script file from template
-
import_dataset_csv()
- Import a dataset from a csv file
-
import_fmetadata_csv()
- Import feature metadata from a csv file
-
import_fmetadata_gff()
- Import features metadata from a GFF/GTF file
-
import_smetadata_csv()
- Import samples metadata from a csv file
-
import_dataset_csv_factory()
- Target factory for csv datasets import
-
import_fmetadata_csv_factory()
- Target factory for csv features metadata import
-
import_fmetadata_gff_factory()
- Target factory for GFF/GTF features metadata import
-
import_smetadata_csv_factory()
- Target factory for csv samples metadata import
-
create_omics_set()
- Create a Biobase set object to store omics data
-
create_omics_set_factory()
- Target factory for omics sets creation
-
create_multiomics_set()
- Create a MultiDataSet object to store multi-omics data
-
add_omics_set()
- Adds an omics set to a MultiDataSet object
-
MetabolomeSet
MetabolomeSet-class
- Class to contain objects describing high-throughput metabolomics assays.
-
PhenotypeSet
PhenotypeSet-class
- Class to contain objects describing phenotypic assays.
-
add_metabo()
- Method to add a MetabolomeSet to a MultiDataSet object.
-
add_pheno()
- Method to add a PhenotypeSet to a MultiDataSet object.
-
n_features()
- Number of features in each dataset of MultiDataSet object
-
n_samples()
- Number of samples in each dataset of MultiDataSet object
-
get_features()
- Get feature IDs from MultiDataSet
-
get_samples()
- Get sample IDs from MultiDataSet
-
get_datasets()
- Get multi-omics measurement datasets
-
get_dataset_matrix()
- Get multi-omics dataset as matrix
-
get_features_metadata()
- Get features metadata dataframes from MultiDataSet
-
get_samples_metadata()
- Get samples metadata dataframes from MultiDataSet
-
get_samples_metadata_combined()
- Get combined samples metadata data-frame from MultiDataSet
-
check_missing_values()
- Check for missing values in MultiDataSet
-
get_features_labels()
- Get feature labels
-
join_features_metadata()
- Join feature metadata to table
-
join_samples_metadata()
- Join samples metadata to table
-
plot_samples_upset()
- Upset plot of samples
-
plot_density_data()
- Per-dataset density plot for MultiDataSet object
-
plot_meansd_data()
- Per-dataset mean-sd trend plots for MultiDataSet object
-
plot_data_covariate()
- Plots omics data vs sample covariate
-
plot_data_heatmap()
- Plots omics data as heatmap
-
replace_dataset()
- Replace matrix dataset within a MultiDataSet object
-
round_dataset()
- Round values in omics dataset from MultiDataSet object
-
add_features_metadata()
- Adding data-frame to features metadata
-
add_samples_metadata()
- Adding data-frame to samples metadata
-
subset_features()
- Subset a MultiDataSet object by feature
-
run_pca()
- Run PCA on MultiDataSet
-
run_pca_matrix()
- Run PCA on matrix
-
get_complete_data()
- Get MultiDataSet object with imputed values
-
pca_complete_data_factory()
- Target factory for PCA run and missing values imputation on each omics dataset
-
plot_screeplot_pca()
- Screeplots for single-omics PCA
-
plot_samples_coordinates_pca()
- Samples score plots for single-omics PCA
-
get_pca_arguments()
- Extract arguments used in PCA run
-
transform_bestNormalise_auto()
- Applies the bestNormalize function to rows of a matrix
-
transform_bestNormalise_manual()
- Applies a normalisation method from bestNormalize to rows of a matrix
-
transform_dataset()
- Applies a transformation to a dataset from a MultiDataSet object
-
transform_logx()
- Applies a log-x transformation to matrix
-
transform_vsn()
- Applies Variance Stabilising Normalisation (vsn) to matrix
-
transform_vst()
- Applies Variance Stabilising Transformation (DESeq2) to matrix
-
transformation_datasets_factory()
- Target factory for datasets transformation
-
get_transformed_data()
- Get MultiDataSet with transformed data
-
get_table_transformations()
- Get table with transformation applied to each dataset
-
zero_to_half_min()
- Replace zeros with half-min in matrix
-
select_features_mad()
- Select features based on Median Absolute Deviation from MultiDataSet
-
select_features_cov()
- Select features based on Coefficient of Variation from MultiDataSet
-
select_features_mad_matrix()
- Select features based on Median Absolute Deviation from matrix
-
select_features_cov_matrix()
- Select features based on Coefficient of Variation from matrix
-
get_filtered_dataset_variability()
- Get filtered MultiDataSet object based on variability measure
-
feature_preselection_mad_factory()
- Target factory for feature preselection based on Median Absolute Deviation
-
feature_preselection_cov_factory()
- Target factory for feature preselection based on Coefficient of Variation
-
plot_feature_preselection_mad()
- Diagnostics plots for MAD-based feature preselection
-
plot_feature_preselection_cov()
- Diagnostics plots for COV-based feature preselection
-
get_input_splsda()
- Generate sPLS-DA input data (for mixomics)
-
perf_splsda()
- Assess optimal number of components for sPLS-DA on omics dataset from MultiDataSet object
-
run_splsda()
- Performs sPLS-DA on omics dataset from MultiDataSet object
-
get_filtered_dataset_splsda()
- Get filtered MultiDataSet object based on sPLS-DA runs
-
feature_preselection_splsda_factory()
- Target factory for feature preselection based on sPLS-DA
-
plot_feature_preselection_splsda()
- Diagnostics plots for sPLS-DA-based feature preselection
Supervised integration
Integration of datasets aiming to discriminate samples based on an outcome of interest
-
get_input_mixomics_supervised()
- Generate mixomics input data for supervised methods
-
run_pairwise_pls()
- Pairwise PLS datasets comparison
-
diablo_generate_design_matrix()
- Generate DIABLO design matrix
-
diablo_get_optim_ncomp()
- Get the optimal ncomp value
-
diablo_get_pairwise_pls_corr()
- Get pairwise correlations from PLS run
-
diablo_get_params()
- Get parameters from DIABLO run
-
diablo_get_wa_coord()
- Get weighted average coordinates
-
diablo_pairwise_pls_factory()
- Target factory for pairwise PLS and design matrix estimation for DIABLO run
-
diablo_plot()
- Plots DIABLO output
-
diablo_plot_circos()
- Plots DIABLO circos plot
-
diablo_plot_perf()
- Plots DIABLO perf results
-
diablo_plot_tune()
- Plots DIABLO tune results
-
diablo_plot_var()
- Plots DIABLO features correlation circle
-
diablo_predefined_design_matrix()
- Generate a design matrix for DIABLO
-
diablo_run()
- Runs DIABLO algorithm
-
diablo_table_optim_keepX()
- Formatted table with optimal keepX values
-
diablo_tune()
- Tunes keepX arg for DIABLO
MEFISTO
Supervised integration with the MEFISTO method from MOFA2 (for time-series or spatially resolved data)
-
get_input_mefisto()
- Generate MEFISTO input data
Unsupervised integration
Integration of datasets aiming at assessing variation common to the datasets
-
get_input_mofa2()
- Generate input data for MOFA2 package
-
get_input_mofa()
- Generate MOFA input data
-
mofa_get_weights()
- Get feature weights from MOFA object
-
mofa_plot_cor_covariates()
- Plots the correlation between factors and covariates for MOFA
-
get_input_omicspls()
- Generate omicsPLS input data
-
so2pls_compare_samples_joint_components()
- Compares sO2PLS samples joint component scores between the two datasets
-
so2pls_crossval_o2m()
- Wrapper for OmicsPLS::crossval_o2m function
-
so2pls_crossval_o2m_adjR2()
- Wrapper for OmicsPLS::crossval_o2m_adjR2 function
-
so2pls_crossval_sparsity()
- Perform cross-validation to find the optimal number of features/groups to keep for each joint component for sO2PLS
-
so2pls_get_components()
- Get list of latent components from sO2PLS results
-
so2pls_get_optim_keep()
- Extract optimal number of features to keep from cross-validation results for sO2PLS
-
so2pls_get_optim_ncomp()
- Extract optimal number of components from cross-validation results for sO2PLS
-
so2pls_get_optim_ncomp_adj()
- Extract optimal number of components from adjusted cross-validation results for sO2PLS
-
so2pls_get_variance_explained()
- Percentage of variance explained for sO2PLS
-
so2pls_get_wa_coord()
- Computes average sample coordinates for sO2PLS joint components
-
so2pls_o2m()
- Wrapper for OmicsPLS::o2m function
-
so2pls_plot_cv()
- Plots cross-validation results for sO2PLS
-
so2pls_plot_cv_adj()
- Plot adjusted cross-validation results for sO2PLS
-
so2pls_plot_cv_sparsity()
- Plot sparsity cross-validation results for sO2PLS
-
so2pls_plot_joint_components_coefficients()
- Plots sO2PLS contributions between datasets joint components
-
so2pls_plot_samples_joint_components()
- Plots sO2PLS joint components samples scores
-
so2pls_plot_samples_specific_components()
- Plots sO2PLS specific components samples scores
-
so2pls_plot_summary()
- Plot summary of sO2PLS run
-
so2pls_print_cv_adj()
- Print adjusted cross-validation results for sO2PLS
-
so2pls_print_cv_sparsity()
- Print sparsity cross-validation results for sO2PLS
-
so2pls_screeplot()
- Screeplot sO2PLS run
-
get_input_spls()
- Generate sPLS input data (for mixomics)
-
get_input_mixomics_unsupervised()
- Generate mixomics input data for unsupervised methods
-
spls_get_optim_ncomp()
- Select the optimal ncomp from sPLS cross-validation results
-
spls_get_params()
- Get parameters from sPLS run
-
spls_get_wa_coord()
- Computes average sample coordinates for sPLS components
-
spls_plot_tune()
- Displays results of sPLS tuning
-
spls_plot_var()
- Plots sPLS features correlation circle
-
spls_run()
- Run sPLS algorithm
-
spls_tune()
- Performs cross-validation for mixomics sPLS to select optimal keepX and keepY
Standardised method output
Functions to get and query the results of an integration method as a standardised R object
-
get_output()
get_output_pca()
get_output_splsda()
get_output_spls()
get_output_diablo()
get_output_mofa2()
get_output_so2pls()
- Extract output of integration method in standard format
-
get_latent_dimensions()
- Get latent dimensions levels from dimension reduction output
-
get_top_features()
- Extract top features
-
get_selected_features()
- Extract selected features
-
plot_variance_explained()
- Plot of variance explained
-
plot_samples_score()
- Plots sample scores as scatterplot matrix
-
plot_samples_score_pair()
- Plots sample scores as a scatterplot
-
plot_samples_score_covariate()
- Plots sample scores against covariate
-
plot_features_weight_distr()
- Plots features weight distribution
-
plot_features_weight_pair()
- Plots features weight as a scatterplot
-
plot_features_weight_covariate()
- Plots features weight against covariate
-
plot_top_features()
- Plots top features importance
-
evaluate_feature_selection_table()
- Evaluate feature selection against features label
-
make_feature_sets_from_df()
- Makes list of feature sets from data-frame
-
make_feature_sets_from_fm()
- Makes list of feature sets from features metadata
-
check_feature_sets()
- Checks features assignment to sets
-
reduce_feature_sets_data()
- Reduce feature sets to match multi-omics dataset
-
evaluate_method_enrichment()
- Enrichment analysis for integration results
-
plot_features_weight_set()
- Plots features weight in/not in a set
-
compute_samples_silhouette()
- Computes samples silhouette score from method output
-
get_samples_score_correlation()
- Get samples score correlation
-
get_features_weight_correlation()
- Get features weight correlation
-
comparison_heatmap_corr()
- Heatmap of correlation between latent dimensions
-
comparison_plot_correlation()
- Correlation plot between latent components
-
compute_consensus_importance()
- Computes consensus feature importance
-
consensus_importance_metric()
- Calculate features importance score
-
show_consensus_metrics()
- Illustrates importance consensus metrics
-
check_is_multidataset()
- Checks whether object is MultiDataSet
-
check_input_multidataset()
- Check a MultiDataSet input
-
plot_correlation_matrix()
- Plot correlation matrix
-
plot_correlation_matrix_full()
- Plots a full correlation matrix (corrplot-style)
-
ggpairs_custom()
- ggpairs plot with custom colours
-
plot_x_wrapper()
- Wrapper to create plot
-
plot_x_continuous()
- Scatter plot function
-
plot_x_discrete()
- Violin plot function function
-
hclust_matrix_rows()
- Hierarchical clustering of matrix rows
-
options_list_as_tibble()
- Returns options list as a tibble
-
is_equal_or_null()
- Check null or equality