
Samples score plots for single-omics PCA
Source:R/multidataset_pca.R
plot_samples_coordinates_pca.RdProduces a pairwise samples score plot for the PCA run on each omics dataset,
using GGally::ggpairs().
Arguments
- pca_result
List of PCA results on each of the datasets, each computed with the
run_pca()function.- pcs
Integer vector or named list of integer vectors, the principal components to display for each dataset. If integer vector (e.g.
1:5), will be used for all datasets. Alternatively, a different set of PCs can be specified through a named list (e.g.list('snps' = 1:4, 'rnaseq' = 1:5)). The length of the list must match the number of datasets to be displayed, and the names must match the dataset names. Default value isNULL, i.e. all principal components will be plotted for each dataset.- datasets
Optional, character vector of datasets for which the plots should be created.
- ...
Other arguments passed to
plot_samples_score().
Examples
if (FALSE) { # \dontrun{
## Default: plotting all PCs for all datasets
plot_samples_coordinates_pca(pca_result)
## Plotting only the first 3 PCs for each dataset
plot_samples_coordinates_pca(
pca_result,
pcs = 1:3
)
## Plotting the first 3 PCs for the genomics dataset, 4 PCs for the
## transcriptomics dataset, 5 PCs for the metabolomics dataset
plot_samples_coordinates_pca(
pca_result,
pcs = list(
"snps" = 1:3,
"rnaseq" = 1:4,
"metabolome" = 1:5
)
)
## Plotting the first 3 PCs for the genomics and transcriptomics datasets
plot_samples_coordinates_pca(
pca_result,
pcs = 1:3,
datasets = c("snps", "rnaseq")
)
# Plotting the first 3 PCs for the genomics dataset and 4 PCs for the
## transcriptomics dataset (no plot for the metabolomics dataset)
plot_samples_coordinates_pca(
pca_result,
pcs = list(
"snps" = 1:3,
"rnaseq" = 1:4
),
datasets = c("snps", "rnaseq")
)
} # }