Samples score plots for single-omics PCA
Source:R/multidataset_pca.R
plot_samples_coordinates_pca.Rd
Produces a pairwise samples score plot for the PCA run on each omics dataset,
using GGally::ggpairs()
.
Arguments
- pca_result
List of PCA results on each of the datasets, each computed with the
run_pca()
function.- pcs
Integer vector or named list of integer vectors, the principal components to display for each dataset. If integer vector (e.g.
1:5
), will be used for all datasets. Alternatively, a different set of PCs can be specified through a named list (e.g.list('snps' = 1:4, 'rnaseq' = 1:5)
). The length of the list must match the number of datasets to be displayed, and the names must match the dataset names. Default value isNULL
, i.e. all principal components will be plotted for each dataset.- datasets
Optional, character vector of datasets for which the plots should be created.
- ...
Other arguments passed to
plot_samples_score()
.
Examples
if (FALSE) { # \dontrun{
## Default: plotting all PCs for all datasets
plot_samples_coordinates_pca(pca_result)
## Plotting only the first 3 PCs for each dataset
plot_samples_coordinates_pca(
pca_result,
pcs = 1:3
)
## Plotting the first 3 PCs for the genomics dataset, 4 PCs for the
## transcriptomics dataset, 5 PCs for the metabolomics dataset
plot_samples_coordinates_pca(
pca_result,
pcs = list(
"snps" = 1:3,
"rnaseq" = 1:4,
"metabolome" = 1:5
)
)
## Plotting the first 3 PCs for the genomics and transcriptomics datasets
plot_samples_coordinates_pca(
pca_result,
pcs = 1:3,
datasets = c("snps", "rnaseq")
)
# Plotting the first 3 PCs for the genomics dataset and 4 PCs for the
## transcriptomics dataset (no plot for the metabolomics dataset)
plot_samples_coordinates_pca(
pca_result,
pcs = list(
"snps" = 1:3,
"rnaseq" = 1:4
),
datasets = c("snps", "rnaseq")
)
} # }